Code for Quiz 6, more dplyr and our first interactive chart using echarts4r.
drug_cos.csv
,
health_cos.csv
into R and assign to the variables
drug_cos
and health_cos
, respectivelyglimpse
to get a glimpse of the dataRows: 104
Columns: 9
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet…
$ location <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New …
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366…
$ grossmargin <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666…
$ netmargin <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163…
$ ros <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321…
$ roe <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,…
Rows: 464
Columns: 11
$ ticker <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS",…
$ name <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoeti…
$ revenue <dbl> 4233000000, 4336000000, 4561000000, 4785000000, …
$ gp <dbl> 2581000000, 2773000000, 2892000000, 3068000000, …
$ rnd <dbl> 427000000, 409000000, 399000000, 396000000, 3640…
$ netincome <dbl> 245000000, 436000000, 504000000, 583000000, 3390…
$ assets <dbl> 5711000000, 6262000000, 6558000000, 6588000000, …
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 5251000000, …
$ marketcap <dbl> NA, NA, 16345223371, 21572007994, 23860348635, 2…
$ year <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, …
$ industry <chr> "Drug Manufacturers - Specialty & Generic", "Dru…
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name" "year"
For drug_cos
select (in this order):
ticker
, year
, grossmargin
Extract observations for 2018
Assign output to drug_subset
For health_cos
select (in this order):
ticker
, year
, revenue
,
gp
, industry
Extract observations for 2018
Assign output to health_subset
drug_subset
join with
columns in health_subset
# A tibble: 13 × 6
ticker year grossmargin revenue gp industry
<chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 ZTS 2018 0.672 5825000000 3914000000 Drug Manufacturer…
2 PRGO 2018 0.387 4731700000 1831500000 Drug Manufacturer…
3 PFE 2018 0.79 53647000000 42399000000 Drug Manufacturer…
4 MYL 2018 0.35 11433900000 4001600000 Drug Manufacturer…
5 MRK 2018 0.681 42294000000 28785000000 Drug Manufacturer…
6 LLY 2018 0.738 24555700000 18125700000 Drug Manufacturer…
7 JNJ 2018 0.668 81581000000 54490000000 Drug Manufacturer…
8 GILD 2018 0.781 22127000000 17274000000 Drug Manufacturer…
9 BMY 2018 0.71 22561000000 16014000000 Drug Manufacturer…
10 BIIB 2018 0.865 13452900000 11636600000 Drug Manufacturer…
11 AMGN 2018 0.827 23747000000 19646000000 Drug Manufacturer…
12 AGN 2018 0.861 15787400000 13596000000 Drug Manufacturer…
13 ABBV 2018 0.764 32753000000 25035000000 Drug Manufacturer…
drug_cos
drug_cos
drug_cos_subset
drug_cos_subset
drug_cos_subset
# A tibble: 8 × 9
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John… New Jer… 0.247 0.687 0.149 0.199 0.161
2 JNJ John… New Jer… 0.272 0.678 0.161 0.218 0.173
3 JNJ John… New Jer… 0.281 0.687 0.194 0.224 0.197
4 JNJ John… New Jer… 0.336 0.694 0.22 0.284 0.217
5 JNJ John… New Jer… 0.335 0.693 0.22 0.282 0.219
6 JNJ John… New Jer… 0.338 0.697 0.23 0.286 0.229
7 JNJ John… New Jer… 0.317 0.667 0.017 0.243 0.019
8 JNJ John… New Jer… 0.318 0.668 0.188 0.233 0.244
# … with 1 more variable: year <dbl>
Use left_join
to combine the rows and columns of
drug_cos_subset
with the columns of
health_cos
Assign the output to combo_df
combo_df
combo_df
# A tibble: 8 × 17
ticker name location ebitdamargin grossmargin netmargin ros roe
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 JNJ John… New Jer… 0.247 0.687 0.149 0.199 0.161
2 JNJ John… New Jer… 0.272 0.678 0.161 0.218 0.173
3 JNJ John… New Jer… 0.281 0.687 0.194 0.224 0.197
4 JNJ John… New Jer… 0.336 0.694 0.22 0.284 0.217
5 JNJ John… New Jer… 0.335 0.693 0.22 0.282 0.219
6 JNJ John… New Jer… 0.338 0.697 0.23 0.286 0.229
7 JNJ John… New Jer… 0.317 0.667 0.017 0.243 0.019
8 JNJ John… New Jer… 0.318 0.668 0.188 0.233 0.244
# … with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
# rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
# marketcap <dbl>, industry <chr>
ticker
, name
,
location
, and industry
are the same for all
observationsco_name
co_location
co_industry
The company Johnson & Johnson is located in New Jersey; U.S.A and is a member of the Drug Manufacturers - General group.
Start with combo_df
Select variables (in this order): year
,
grossmargin
, netmargin
, revenue
,
gp
, netincome
Assign the output to combo_df_subset
combo_df_subset
combo_df_subset
# A tibble: 8 × 6
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
Create the variable grossmargin_check
to compare
with the variable grossmargin
. They should be
equal.
grossmargin_check
= gp
/
revenue
Create the variable close_enough
to check that the
absolute value of the difference between grossmargin_check
and grossmargin
is less than 0.001.
combo_df_subset %>%
mutate(grossmargin_check = gp / revenue,
close_enough = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 × 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
# … with 2 more variables: grossmargin_check <dbl>,
# close_enough <lgl>
Create the variable netmargin_check
to compare with
the variable netmargin
. They should be equal.
Create the variable close_enough
to check that the
absolute value of the difference between netmargin_check
and netmargin
is less than 0.001
combo_df_subset %>%
mutate(netmargin_check = netincome / revenue,
close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 × 8
year grossmargin netmargin revenue gp netincome
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 2011 0.687 0.149 65030000000 44670000000 9672000000
2 2012 0.678 0.161 67224000000 45566000000 10853000000
3 2013 0.687 0.194 71312000000 48970000000 13831000000
4 2014 0.694 0.22 74331000000 51585000000 16323000000
5 2015 0.693 0.22 70074000000 48538000000 15409000000
6 2016 0.697 0.23 71890000000 50101000000 16540000000
7 2017 0.667 0.017 76450000000 51011000000 1300000000
8 2018 0.668 0.188 81581000000 54490000000 15297000000
# … with 2 more variables: netmargin_check <dbl>, close_enough <lgl>
Fill in the blanks
Put the command you use in the Rchunks in the Rmd file for this quiz
Use health_cos
data
For each industry calculate
health_cos %>%
group_by(industry) %>%
summarize(mean_netmargin_percent = mean(netincome / revenue) * 100,
median_netmargin_percent = median(netincome / revenue) * 100,
min_netmargin_percent = min(netincome / revenue) * 100,
max_netmargin_percent = max(netincome / revenue) * 100)
# A tibble: 9 × 5
industry mean_netmargin_… median_netmargi… min_netmargin_p…
<chr> <dbl> <dbl> <dbl>
1 Biotechnology -4.66 7.62 -197.
2 Diagnostics & Re… 13.1 12.3 0.399
3 Drug Manufacture… 19.4 19.5 -34.9
4 Drug Manufacture… 5.88 9.01 -76.0
5 Healthcare Plans 3.28 3.37 -0.305
6 Medical Care Fac… 6.10 6.46 1.40
7 Medical Devices 12.4 14.3 -56.1
8 Medical Distribu… 1.70 1.03 -0.102
9 Medical Instrume… 12.3 14.0 -47.1
# … with 1 more variable: max_netmargin_percent <dbl>
mean_netmargin_percent for the industry Diagnostics & Research is 13.1%
median_netmargin_percent for the industry Diagnostics & Research is 12.3%
min_netmargin_percent for the industry Diagnostics & Research is 0.399%
max_netmargin_percent for the industry Diagnostics & Research is 26.3%
health_cos
datahealth_cos
and assign to the variable
health_cos_subset
health_cos_subset
health_cos_subset
# A tibble: 8 × 11
ticker name revenue gp rnd netincome assets liabilities
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 BMY Bristol… 2.12e10 1.56e10 3.84e9 3.71e9 3.30e10 17103000000
2 BMY Bristol… 1.76e10 1.30e10 3.90e9 1.96e9 3.59e10 22259000000
3 BMY Bristol… 1.64e10 1.18e10 3.73e9 2.56e9 3.86e10 23356000000
4 BMY Bristol… 1.59e10 1.19e10 4.53e9 2.00e9 3.37e10 18766000000
5 BMY Bristol… 1.66e10 1.27e10 5.92e9 1.56e9 3.17e10 17324000000
6 BMY Bristol… 1.94e10 1.45e10 5.01e9 4.46e9 3.37e10 17360000000
7 BMY Bristol… 2.08e10 1.47e10 6.48e9 1.01e9 3.36e10 21704000000
8 BMY Bristol… 2.26e10 1.60e10 6.34e9 4.92e9 3.50e10 20859000000
# … with 3 more variables: marketcap <dbl>, year <dbl>,
# industry <chr>
?distinct
. Go to the help pane to
see what distinct
does?pull
. Go to the help pane to see
what pull
doesRun the code below
co_name
You can take output form your code and include it in your text.
In the following chunk
co_industry
The company Bristol Myers Squibb Co is a member of the Drug Manufacturers - General group.
health_cos
THENgroup_by
industry THENdf
glimpse
to glimpse the data for the plotsRows: 9
Columns: 2
$ industry <chr> "Biotechnology", "Diagnostics & Research", "Drug…
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.06851879, …
use ggplot
to initialize the chart
data is df
the variable industry
is mapped to the x-axis
med_rnd_rev
the variable med_rnd_rev
is mapped to the
y-axis
add a bar chart using geom_col
use scale_y_continuous
to label the y-axis with
percent
use coord_flip()
to flip the coordinates
use labs
to add title, subtitle, and remove x and y
- axes
use theme_classic()
from the hrbrthemes package to
improve the theme
ggplot(data = df,
mapping = aes(
x = reorder(industry, med_rnd_rev),
y = med_rnd_rev)) +
geom_col() +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(
title = "Median R&D expenditures",
subtitle = "by industry as a percent of revenue from 2011 - 2018",
x = NULL, y = NULL) +
theme_classic()
start off with the data df
use arrange
to reorder
med_rnd_rev
use e_charts
to initialize a chart
industry
is mapped to the x-axisadd a bar chart using the e_bar
with the values of
med_rnd_rev
use e_flip_coords()
to flip the coordinates
use e_title
to add the title and the
subtitle
use e_legend
to remove legends
use e_x_axis
to change format of labels on x-axis to
percent
use e_y_axis
to remove labels on y-axis
use e_theme
to change the theme. Find more themes here
df %>%
arrange(med_rnd_rev) %>%
e_charts(
x = industry) %>%
e_bar(
serie = med_rnd_rev,
name = "median") %>%
e_flip_coords() %>%
e_tooltip() %>%
e_title(
text = "Median industry R&D expenditures",
subtext = "by industry as a percent of revenue from 2011 to 2018",
left = "center") %>%
e_legend(FALSE) %>%
e_x_axis(
formatter = e_axis_formatter("percent", digits = 0)) %>%
e_y_axis(show = FALSE) %>%
e_theme("chalk")